Some people may think that DNA fingerprinting and fingerprinting are the same thing. This is not particularly true. That said, they have many similarities and differences. Some of the differences are the process, the accuracy of the testing, the results, the way they're found, so many ways contribute to the differences. In the following paragraphs, it is talking about the ways they differ and are similar, what each of them are and their processes.

Let's start out with DNA fingerprinting. DNA fingerprinting is the way to identify a certain person. It has been around for at least twenty-five years and also has two other names, Genetic fingerprinting and DNA profiling. Some different uses of DNA fingerprinting are, diagnosis of inherited disorders, developing cures for inherited disorders, biological evidence, and personal identification. There are different techniques to DNA fingerprinting; two of which are RFLP and STR.

RFLP (Restriction Fragment Length Polymorphisms) is probably the oldest technique in DNA Analysis. The scientists who execute this process, have a certain procedure they have to do. This procedure involves radiation; the radiation separates and binds the DNA fragments. When the lab is done, the scientists can see the unique designs and try to match the fingerprints with the known fingerprint matches to come up with a suspect for who committed the crime. Even though it is a good idea, there are some problems may occur.

The other one STR (Short Tandem Repeats) is used by a set of thirteen loci from sample and compare it to CODIS for identification. It is mostly used in law-enforcement or the FBI. The process is that STR analyses the DNA by taking the loci and putting it through this gel called electrophoresis. The gel uses an electric shock through the gel separating the repeats into different sequences. The STR analyzes how many times base pairs repeat themselves on a
particular location on a strand of DNA. It can be extracted from human tissue.

DNA fingerprinting is not actual fingerprints. They are only a record of a person’s genetic makeup. An actual human fingerprint is a bunch of ridges on the tip of each finger. The pattern of these ridges varies from person to person, so it is so distinctive that each person can most likely, be identified by a fingerprint.

Mistakes can be made though. In DNA profiling, there is the chance of contamination, etc. In actual fingerprinting there is a chance of smudging, partial fingerprints, etc.

Fingerprinting and DNA fingerprinting are alike in many ways, but also different in other ways. In DNA fingerprinting there are many benefits, and many disadvantages. In fingerprinting there is also an abundance of advantages and disadvantages. But both ways can help the people who need the information.